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MALDI-TOF continues to be an important tool for many proteomic studies. Recently, a new rationally
designed matrix 4-chloro-a-cyanocinnamic acid was introduced, which is reported to have superior perfor-
mance as compared with the “gold standard” a-cyano-4-hydroxycinnamic acid (CHCA)." In this study, the
performance of this new matrix, using the Shimadzu Biotech Axima TOF? (Shimadzu Biotech, Manchester,
UK), was investigated. The overall sequence coverage as well as sensitivity of this matrix were compared with
CHCA using standard protein tryptic digests. The performance of this matrix with labile peptides, such as
phosphopeptides and 4-sulfophenyl isothiocynate-derivatized peptides, to facilitate de novo sequencing was
also explored. This matrix was found to be better performing than CHCA in overall sensitivity and showed
better sequence coverage at low-digest levels, partly as a result of less of a bias for arginine-containing
peptides. It also showed as much as a tenfold improvement in sensitivity with labile peptides on standard
stainless-steel targets. In addition, as a result of the much cooler nature of this matrix, labile peptides are
readily seen intact with much less fragmentation in mass spectrometry (MS) mode. This matrix was also
evaluated in the MS/MS fragmentation modes of post-source decay (PSD) and collisional-induced dissocia-
tion (CID). It was found that fragmentation occurs readily in CID, however as a result of the very cool nature
of this new matrix, the PSD fragments were quite weak. This matrix promises to be an important addition to
the already extensive array of MALDI matrices.
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INTRODUCTION

As its introduction in the late 1980s, MALDI mass spec-
trometry (MS) has been an important tool in the analysis of
many biomolecules, in particular, proteins and peptides.
This has been, in part, facilitated by the discovery that
certain organic acids, when cocrystallized with the analyte,
allow for the facile ionization of large biomolecules into the
gas phase when irradiated by laser light under vaccum.>?
Instrumentation has evolved immensely over the past 20
years; however, the types of organic acid matrices used have
remained essentially unchanged.

The MS analysis of peptide digests to identify a protein
as well as some of its modifications is a well-established
proteomic technique. MALDI TOF MS is particularly well
suited for the peptide mass fingerprinting (PMF) technique
as well as selected fragmentation of various precursors using
post-source decay (PSD) and/or collisional-induced disso-
ciation (CID). It was found early on that the organic acid
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a-cyano-4-hydroxycinnamic acid (CHCA) was one of the
best universal matrices for analyzing peptide digests.*
Recently, Jaskolla and Lehmann' undertook a system-
atic approach of altering functional groups on the a-cya-
nocinnamic acid (CCA) core and testing the performance
of each of these new matrices. By substitution of the 4-hy-
droxyl moiety with a chlorine atom in the benzene ring
(Fig. 1), a new matrix was found with properties that rival
and in many cases, surpass the performance of the “gold
standard” matrix CHCA. This new matrix CICCA was
found to have properties quite similar to CHCA in terms of
forming uniform cocrystals as well has having an absorp-
tion maxima close to the wavelength of the typical nitrogen
(N,) laser used in MALDI TOF MS (337 nm). As a result
of the lower proton affinity of CICCA relative to CHCA, it
was hypothesized that this would in turn lead to better
proton donation to the analyte, which would result in more
intense ion yields as well as a lower bias for peptides with
the strongly basic residue Arg.' These studies were ex-
tended with a comparative analysis, which showed that the
sequence coverages with CICCA as compared with CHCA
were even more improved with nontryptic enzymatic di-
gests as a result of enhanced detection of acidic and neutral

peptides.”
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FIGURE 1

Molecular structure of 4-chloro-a-CCA (CICCA). The chlorine atom
is replaced by a hydroxyl group in CHCA.

In this study, the performance of CICCA, using a
modern MALDI TOF instrument (Shimadzu Biotech
Axima TOF,? Shimadzu Biotech, Manchester, UK), was
investigated. Initially, it was difficult to find a commercial
source of this matrix, as it is not a commonly used com-
pound. However, it was found that the Sigma Rare Chem-
ical Library (Sigma-Aldrich, St. Louis, MO, USA) had a
compound of a different name but same chemical struc-
ture. The Sigma compound 3-(4-chloro-phenyl)-2-cyano-
acrylic acid has the same chemical structure as CICCA,
which has been described (Fig 1). The material obtained
from Sigma-Aldrich was quite crude in appearance and
required further purification through a couple of recrystal-
lization steps. In this study, a direct side-by-side compari-
son of CHCA to CICCA in the analysis of tryptic digests of
the standard proteins, BSA and chicken OVA, was per-
formed. The performance of this matrix with a standard
phosphopeptide mixture in a yeast enolase digest before
and after titanium dioxide (TiO,) enrichment was also
examined. Finally, the performance of this matrix with the
very labile peptides formed after derivitization with 4-sul-
fophenyl isothiocyanate (SPITC), which has been found to
facilitate de novo MS/MS sequencing dramatically, was
compared.®

MATERIALS AND METHODS
Materials

Ultrapure water and acetonitrile (OmniSolv grade) were
from EMD Chemicals (Gibbstown, NJ, USA). CHCA
and the phosphopeptide standard were from Waters
MassPREP products (Milford, MA, USA). The protein
digest standards of BSA and OVA were from Protea
Biosciences (Morgantown, WV, USA). Fibrinogen A
peptide standard was from the chemically assisted fragmenta-
tion MALDI sequencing kit (Amersham Biosciences, Upp-
sala, Sweden). SPITC and 3-(4-chloro-phenyl)-2-cyano-
acrylic acid (CICCA), sodium bicarbonate (NaHCOj),
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sodium hydroxide, and ammonium hydroxide (NH,OH)
were from Sigma-Aldrich. Sequencing-grade trifluoroacetic
acid (TFA) was from Applied Biosystems (Foster City, CA,
USA). TiO, NuTips (1-10 wl) for phosphopeptide enrich-
ment were from Glygen Corp. (Columbia, MD, USA). Micro
C, 5 ZipTips were from Millipore (Billerica, MA, USA).

Matrix Recrystallization

Approximately 70 mg crude CICCA ina 1.5-ml Eppendorf
tube was dissolved in 300 wl 70% acetonitrile (70:30
acetonitrile:water). The solution was heated to 50°C to
facilitate dissolution and then allowed to cool to room
temperature. The tube was then placed in an ice bath for a
few minutes, upon which, a phase separation was observed.
This is most likely a result of residual organic solvents from
the synthesis. The lower phase (~50 pl) was withdrawn
and discarded, as few crystals grow from this phase. The
crystallization process was allowed to continue in the ice
bath, at which point, long white crystals begin to grow.
Sometimes, a slight warming and then cooling would get
them to grow. The crystals were allowed to grow for an
additional 30—60 min. The crystals were then spun down
at 7-10 g, and the liquid volume above them was with-
drawn carefully with a pipette. Final drying of the crystals
was accomplished in a Speed Vac. This process was re-
peated a second time and typically provides 70—80% re-
covery from crude material.

FIGURE 2

Magnified image of a single stainless-steel MALDI target showing a
dried CICCA matrix spot. The diameter of the circular-steel target is
approximately 3.0 mm.
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TiO, Phosphopeptide Enrichment

Phosphopeptides were enriched using a modification of the
published method.” The dried peptide digest was dissolved
in 10 pl binding solvent (75:19:6 acetonitrile:water: TFA).
A 1- to 10-pl TiO, NuTip was washed two times with 10
pl aliquots of binding solvent. Phosphopeptides were
bound by repetitive pipetting (20 times) of the 10-ul
sample volume. The NuTip was then washed five times
with binding solvent and then five times with 0.1% TFA.
Phosphopeptides were then eluted in a separate tube with a
10-pl vol 6% NH,OH after repetitive pipetting (10
times). A 5-pl aliquot of 5% TFA was then added, and the
phosphopeptides were concentrated further and purified
prior to MALDI analysis using a micro C, 5 ZipTip.

SPITC Derivatization

Protein digests were derivatized with SPITC as follows.°
Dried protein digests were dissolved in 8.5 wl SPITC
solution (10 mg/ml in 20 mM NaHCO;, pH 9.5). The
sample was incubated for 30 min at 55°C in a heating
block. The reaction was stopped by the addition of 4.5 .l

5% TFA. Samples were concentrated further and desalted
using a micro C, ¢ ZipTip prior to MALDI analysis.

MALDI MS Analysis

All spectra were obtained manually on a Shimadzu Bio-
tech Axima TOF? (Shimadzu Biotech). The appropriate
concentrations of samples were used such that a 0.5-pl
aliquot provided the indicated amount on the target for
analysis. CICCA (0.5 pl; 5 mg/ml) in acetonitrile:0.1%
TFA (80:20) or CHCA (5 mg/ml) in acetonitrile:0.1%
TFA (50:50) was added to the sample and allowed to air
dry. Typical spot sizes were about 2 mm on the standard
384 spot stainless-steel targets. No attempts were made
to concentrate samples further on target using special
anchor chips or drying techniques. All spectra were
acquired in the positive ion reflectron mode using a
337-nm N, laser. Typically, 250-500 laser shots were
acquired for each MS spectra, and spectra were obtained
at a laser power, which attempted to maximize resolu-
tion and peak intensity. All spectra were obtained from
at least two samples to verify the consistency of the
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FIGURE 3

PMEF of tryptic digests of BSA. The indicated amounts are what were applied to the sample target. Traces for CICCA are
on the upper panel and those for CHCA on the lower panel.
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results. A local external calibrant was used, which con-
sisted of angiotensin II (MH" of 1046.54), P14R
(MH™ of 1533.86), and adrenocorticotropic hormone
corticotrophin-like intermediate lobe peptide 18-39
(MH ™" 0f2465.20). PSD and CID spectra were acquired
using a dual-timed ion gate at a laser power approxi-
mately 20% higher than MS acquisition. Helium was
used as the collision gas in the CID cell. PSD and CID
fragments were resolved in a curved-field reflectron,
which allowed for seamless, full mass range acquisition
of the MS/MS spectra. All spectra were processed with
Mascot Distiller (Matrix Sciences Ltd., UK) prior to
database searching, which was performed on a local
server using the Mascot search engine, using the
SwissProt nonredundant protein database. For MS
searches, the PMF program was used with a peptide mass
tolerance of 150 ppm. For MS/MS searching (PSD and
CID spectra), the MS/MS Ion Search program was used
with a precursor tolerance of 150 ppm and a fragment
tolerance of 1.5 Da. The variable modifications of pro-
tein N-term acetylation, carbamidomethylation of Cys,

oxidation of Met, and Gln to pyro Glu for N-term Gln
were considered. In the phosphopeptide analyses, phos-
pho Ser, Thr, and Tyr were also considered.

RESULTS AND DISCUSSION
Matrix Properties

The crude CICCA obtained from the Sigma Rare Chemical
Library was slightly pink in color and had a chunky appear-
ance. After recrystallization, the material appeared white
with splinter-like crystals. The CICCA matrix formed uni-
form cocrystals with the peptide samples on the MALDI
target (see Fig. 2). Occasionally, a slight crust ring would
form at the boundary of the dried spot, but this did not
appear to affect the sample signals. CICCA usually required
10-15% more laser power for threshold signals than what
was typically required for CHCA. Unlike CHCA, the
CICCA matrix was also found to be quite volatile under
vacuum and would show noticeable spot disappearance
and loss in signal intensities after 1 day under vacuum. This
therefore requires that samples be analyzed within a few
hours after being placed in vacuum or removing the plate

CICCA
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FIGURE 4
PMEF of tryptic digests of chicken OVA. The indicated amounts are what were applied to the sample target. Traces for
CICCA are on the upper panel and those for CHCA on the lower panel.
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FIGURE 5

A PMF comparison for the 100-fmol load of BSA tryptic digest between CICCA (lower trace) and CHCA (upper trace).
Some of the peptides with C-terminal Lys (K) residues are indicated in the CICCA trace, and some C-terminal Arg
(R)-containing peptides are indicated in the CHCA trace. The 1880.89 peptide contains an N-terminal Arg, which causes

its enhanced signal in the CHCA matrix.

completely if samples cannot be analyzed the same day. It
was found that the matrix crystals are stable at atmospheric
pressure for at least several days. This matrix also exhibits an
absorption band, which is shifted down from that of
CHCA." This will limit its use with other types of lasers,
such as the Nd:YAG at 355 nm.

Tryptic Digests

In an effort to compare the sensitivity and overall sequence
coverage obtained with each matrix, quantitated digests of
BSA and chicken OVA, which had been reduced and
alkylated with iodoacetamide prior to digestion, were ob-
tained. The tryptic peptide mass maps are illustrated in
Figures 3—5. If one compares the overall sequence coverage
between the two matrices in Table 1, there is a clear trend
that indicates that at about the 1-fmol levels and below,
there is a clear sensitivity advantage with CICCA. Overall,
sequence coverages were quite comparable at the 100- and
10-fmol level between the two matrices, and CICCA
showed a slightly better coverage in most instances. It has

also been observed that CICCA generally gives cleaner

TABLE 1

Number of Identified Peptides and Corresponding Sequence
Coverage in Percent of the BSA and OVA Tryptic Digests in
CICCA or CHCA Matrix at the Indicated Amounts Loaded on
the MALDI Target

BSA 100 fmol 10 fmol 1 fmol 200 attomol
CICCA 61 (79%) 48 (70%) 32 (52%) 17 (25%)
CHCA 54 (72%) 37 (56%) 9 (18%) 0 (0%)
OVA 100 fmol 10 fmol 1 fmol 200 attomol
CICCA 28(69%)  21(54%)  14(39%) 8 (23%)
CHCA 24 (65%) 21 (55%) 9 (23%) 0 (0%)
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backgrounds than CHCA with less low-mass artifacts, as
can be seen in the low-abundance digests of Figures 3 and
4. Figure 5 shows a comparison of the100-fmol level digests
of BSA in CICCA and CHCA. What is most striking about
this comparison is the more numerous and intense low-
mass peptides found in the CICCA digest. An examination
of the corresponding peptides indicates that most of them
end with a C-terminal Lys. Thus, at least for relatively
low-mass peptides, it appears that CICCA gives a more
unbiased signal for Arg- and Lys-containing peptides.

As many proteins cannot be identified by PMF alone,
an investigation of the properties of CICCA in terms of its
ability to fragment peptides in PSD and CID modes of
operation was undertaken. It became apparent immedi-
ately that CICCA was a much cooler matrix than CHCA.
The term cool is often used to refer to the ability of a matrix
to impart internal energy to a peptide, which facilitates its
further fragmentation in MS mode or various MS/MS
modes (CID and/or PSD). Matrices that are very cool, such
as 2,5-dihydroxybenzoic acid (DHB), tend to impart less
internal energy, and therefore, the peptide has more inher-
ent stability. After fragmenting many peptides from various
digests, it became apparent that PSD did not perform
nearly as well for CICCA as it had for CHCA. An example
can be seen in Figure 6, showing the PSD fragmentation of
the 927 peptide from the 100-fmol level BSA digest. When
the CID gas is turned on, however, the fragmentation story
becomes quite different. In CICCA, there is usually a
relatively more uniform spectrum of fragments across the
mass range with less dominance of low-mass fragments, as
is typically seen in CHCA. This is nicely illustrated in the
CID spectra of the 1479 peptide from the 100-fmol digest
of BSA in Figure 6. Also, as a result of the relatively cleaner
backgrounds observed in CICCA, CID fragmentation
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FIGURE 6

Comparison of the CID spectra of the 1479 peptide of BSA in CHCA and CICCA is found in the upper panel. The lower
panel contains the comparison of the PSD spectra obtained for the 927 peptide of BSA in CHCA and CICCA. These

spectra were obtained on the 100-fmol loads.

spectra are easily obtained even at the 1-fmol level for some
of the more intense peptide signals. This was not the case at
the 1-fmol levels for CHCA, where no discernable spectra
could be obtained with PSD or CID.

Typically, many 1-dimensional (1-D) gel bands or 2-D
gel spots, which are received by the core facility, are only
visible by silver stain, which usually indicates an amount of
protein that may fall in the few fmol—few hundred attomole
ranges. Having the ability to obtain peptide maps, which
easily identify the proteins at these levels, is a definite
advantage. Furthermore, having the ability to obtain
searchable CID spectra at the 1-fmol and below level allows
for identification of proteins that produce too few peaks to
make a reliable MS identification.

Phosphopeptide Analysis
Phosphorylation of specific proteins is a key regulator of
many biological functions. In an effort toward the identi-
fication of phosphorylation sites, the specific phosphopep-

tides often require further enrichment as a result of their
low abundance and ionization potential. Recently, it has
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been found that TiO, supports allow for the selective
enrichment of a wide variety of phosphopeptides.”®. Typ-
ically, cooler matrices such as DHB show higher sensitivity
for phosphopeptides. This is partially a result of the labile
nature of the phosphate group, which often results in
neutral losses of 98 Da in MALDI MS analyses in hotter
matrices such as CHCA. However, DHB tends to form
heterogeneous, large crystalline deposits, which necessitate
hunting for sweet spots to get good signals.

In this study, a commercially available phosphopeptide
standard was used that contained four synthetic phos-
phopeptides derived from a tryptic digest of yeast enolase.
This standard is particularly useful for evaluating the en-
richment technique and also peptide ionization efficiency
with different matrices. The phosphopeptides (NPLpYK,
HILADLpSK, VNQIGpTLSESIK, and VNQIGTLpSpSIK)
provide for a mixture of a variety of phosphorylation sites,
such as singly phosphorylated Ser, Thr, and Tyr or doubly
phosphorylated Ser. Amounts ranging from 10 pmols
down to 10 fmols phosphorylated enolase digests were

JOURNAL OF BIOMOLECULAR TECHNIQUES, VOLUME 21, ISSUE 2, JULY 2010
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enriched for the phosphopeptides using the TiO, NuTips.
In this study, the actual amount was enriched instead of a
larger amount that could be diluted down further. This
allows for a more accurate expectation when dealing with
real-life samples. Figure 7 shows the comparison from the
1-pmol enrichment to the 10-fmol enrichment for CICCA
and CHCA. It is obvious immediately that after enrich-
ment, the CICCA has a clear sensitivity advantage of nearly
two orders of magnitude. This sensitivity difference was
not observed in the analysis of the unenriched tryptic
peptide digests, as even at the 10-fmol level, the CHCA and
CICCA digests showed the MH ™ signals for the 1368.6
and 1448.6 phosphopeptides, although the signals were
much weaker for CHCA (data not shown). This suggests
that the recovery from the TiO, NuTips is far less than
quantitative. There may be other factors that contribute to

this disparity as well. One such factor could be that CHCA

causes ion suppression. This is evident by the contaminate
peaks between 800 and 900 MH™ for the CHCA digests,
which were not observed in the CICCA digests (Fig. 7).
Other factors include the fact that all of the phosphopep-
tides have a C-terminal Lys, which may limit their overall
sensitivity in the more Arg-biased CHCA matrix. Clearly,
the two larger phosphopeptides (MH" of 1368.6 and
1448.6) are more prominent in the unenriched enolase
digest for the 1-pmol CICCA spectra than the correspond-
ing spectra for CHCA (Fig. 7). Also, the CICCA matrix
shows negligible, neutral loss of the phosphate group in MS
mode. This is not particularly obvious for the CHCA-
enriched digest as a result of the low intensities of the
phosphopeptides; however, neutral losses become much
more obvious as the amounts increase substantially. The
smaller phosphopeptides of NPLpYK (MH™ of 813.39)
and HLADLpSK (MH™" of 863.40) showed weak signal

is more sensitive to artifacts from the TiO, enrichment that intensities in the unenriched and enriched digests. This
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FIGURE 7
Comparisons of the TiO,-enriched enolase tryptic digests for CICCA (upper panel) traces and CHCA (lower panel)
traces. The top trace in each panel is a 1-pmol load of an unenriched enolase digest containing the four reference
phosphopeptides. The amounts indicated on the TiO,-enriched traces are the amounts of digest that underwent
enrichment. Enriched phosphopeptides are NPLpYK (MH™ of 813.39), HLADLpSK (MH™ of 863.40), VNQIGpTLSESIK
(MH" of 1368.68), and VNQIGTLpSpSIK (MH ™ of 1448.64).
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TABLE 2

Mascot MS/MS lon Search Scores with an Identity Threshold of
>29 for the Four Phosphopeptides Found in the Enolase digest.
The Individual Peptide lon Score for CICCA and CHCA (in
Parenthesis) Is Reported for the Indicated Amount That Was
Enriched with TiO, Prior to Being Loaded on the MALDI Target

MH+ 10 pmol 1 pmol 100 fmol 10 fmol

813.39 24(20) 25 - -

863.40 29 (14) 19 - -
1368.68 61(29) 65 52 -
1448.64 57(33) 62 26 -

could be a result of weaker ionizing potentials for these
short phosphopeptides. In addition, poorer recovery from
the TiO, NuTips or the C,g ZipTips used for sample
desalting and concentration could also be a factor.

Once phosphopeptides are observed in MALDI MS, it
is necessary to verify their identification further and localize
the site of modification using MS/MS analysis. To this end,
all of the observed, enriched phosphopeptides were frag-
mented using CID in the case of the CICCA matrix or PSD
using the CHCA matrix. PSD was used in the CHCA
matrix as a result of overall better sensitivity and less dom-
inance of the neutral loss peak. Table 2 shows Mascot
MS/MS Ion Search scores for the four phosphopeptides. In
all cases that the peptides were identified, the Mascot search
engine also assigned the sites of phosphorylation correctly.
Although enriched peptide signals were observed for
CHCA for the 1-pmol digest, the PSD was too weak to
provide searchable spectra. Figure 8 shows the correspond-
ing CID spectra obtained in the CICCA matrix for the two
phosphopeptides at MH ™" of 1368.68 and 1448.64 at the
1-pmol level of enrichment. What is most striking about
these CID spectra is that the neutral loss peak intensities at

MH™ of 1271 and 1253, respectively, are relatively com-
parable with other fragment peak intensities and do not
show the domination, as is the case for the CHCA matrix,
where they are often larger than the parent peak (data not
shown). Thus, CICCA shows a clear advantage over
CHCA in the analysis of TiO,-enriched digests in sensitiv-
ity and also, in the ability to generate searchable fragmen-
tation spectra.

SPITC-Derivatized Peptide Analysis

De novo sequencing of peptides continues to be a challenge
in proteomics. When an organism’s genome does not exist
in a database, then standard MS/MS correlation analysis
typically does not work. Without a reference database for
comparison, these spectra are difficult to assign a sequence
to. This is a result, in part, of the fact that many MS/MS
spectra are an incomplete representation of the peptide
sequence. The use of de novo sequencing software algo-
rithms such as PEAKS (Bioinformatics Solutions, Water-
loo, ON, Canada) is strongly dependent on instrument
accuracy and the richness of the MS/MS spectra and often
leads to multiple possibilities for a sequence. Attempts at
enhancing the de novo interpretation have been addressed
by isotopic-labeling approaches. One such approach used
%0 isotopic labeling of tryptic peptides, which allowed for
discrimination between C-terminal y-type ions from N-
terminal b-type ions.” MALDI PSD has been applied to the
sequencing of peptides that have been N-terminally deriv-
itized with negatively charged reagents.®'®""! This has been
found to be particularly useful for the sequencing of tryptic
peptides as a result of the dipolar nature of the derivatized
peptide, facilitating a more mobile ionizing proton, which
results in a more uniform fragmentation of the peptide
backbone.'® The fragmentation spectra formed from such
reagents typically only show a y-type ion series, which is
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FIGURE 8
CID spectra of the doubly phosphorylated peptide at MH™ of 1448.6 (VNQIGTLpSpSIK, upper trace) and singly
phosphorylated peptide at MH™ of 1368.6 (VNQIGpTLSESIK, lower trace) obtained for the 1-pmol enrichment in the
CICCA matrix. Indicated are corresponding phosphate neutral loss peaks (—98 Da).
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enhanced as a result of the suppressed ionization of N-
terminal b-type ions by the negatively charged reagent in
positive-ion mode. Recently, a robust and facile procedure
for derivatizing peptides with SPITC has been developed
for the sequencing of peptides with MALDI PSD.® The
previous studies have used CHCA predominately as the
ionizing matrix for these derivatized peptides. My labora-
tory has successfully used this method for many years in the
sequencing of novel tryptic peptides derived from organ-
isms with uncharacterized genomes. It has been found that
the derivatized peptides are fairly labile with this reagent
and partially degrade to generate the underivatized peptide
along with some of its fragments in the MS mode. Also, as
a result of the negatively charged nature of the reagent, the
derivatized peptides often show up with much weaker
signals or disappear completely in positive ion mode. As the
new CICCA matrix exhibited a much cooler nature than
CHCA and also had much greater sensitivity, it became

obvious to apply it to the analysis of SPITC-derivatized
peptides. In this study, a control peptide of fibrinogen
peptide A (ADSGEGDFLAEGGGVR) and a tryptic digest
of OVA were derivatized with SPITC and analyzed in
CHCA and CICCA. Amounts ranging from 3 pmols down
to 3 fmols were derivatized for the fibrinogen peptide A and
1 pmol down to 10 fmols for the tryptic digest of OVA. No
attempts were made to block the Lys residues from further
reaction with the reagent, thus restricting sequencing to
only peptides that contained C-terminal Arg. Figure 9
shows the MS spectra and PSD spectra of the control
peptide derivatized with SPITC, which adds 215 Da to the
mass of the peptide (MH " of 1751.77). What is compared
is a 3-fmol amount in CICCA with a 30-fmol amount in
CHCA. Clearly, the peptide shows cleaner spectra in
CICCA than CHCA, despite a much lower amount. This is
most likely a result of the labile nature of the derivatized
peptide, which becomes more apparent in the hotter
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FIGURE 9
MS and corresponding PSD spectra of the SPITC-derivatized fibrinogen peptide A (ADSGECDFLAEGGGVR) found
at MH™ of 1751.77. The spectra represent 3 fmols derivitized for CICCA and 30 fmols for CHCA, which gave
comparable signals in MS (upper panel) traces and PSD (lower panel) traces. The fragment ions represent a y-type
ion series.
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CHCA matrix. As was mentioned previously, the PSD of
tryptic peptides was generally found to be weaker in
CICCA than in CHCA (Fig. 6). Derivitized peptides,
however, show a much more enhanced PSD spectra than
their corresponding, underivatized peptide. It was thus
reasoned that this lower yield in CICCA would be over-
come by the enhanced fragmentation of the derivatized
peptide. As can be seen in the lower panel of Figure 9, the
order of magnitude-sensitivity improvement in MS is pre-
served in the PSD fragmentation of the peptide in CICCA.
Even at the 3-fmol level, the complete sequence of the
fibrinogen peptide A could be read out from the spacing of
the y-type ions. In the analysis of tryptic digests, the labile
nature of the derivatized peptides can complicate the MS
spectra further, making precursor selection difficule. MS
spectra of the tryptic digest of OVA after derivatization are
illustrated in Figure 10. Again, an order of magnitude

NEW MALDI MATRIX CLCCA

sensitivity improvement is observed in the CICCA matrix.
In addition, the MS spectrum in CHCA is complicated
further by many fragment ions from the derivatized pep-
tides. One of the derivatized peptides (MH™" of 1902.9)
was selected for fragmentation. This peptide corresponds
to residues 128143 (GGLEPINFQTAADQAR) of OVA.
A PSD spectrum obtained with the 10-fmol-derivatized
digest in CICCA is compared with the same spectra for a
100-fmol-derivatized digest in CHCA. Both spectra repre-
sent 13 residues of contiguous sequence read from the
C-terminus of the peptide. No derivatized peptides were
observed in CHCA at the 3-fmol level for the fibrinogen
peptide A or for the 10-fmol level of the OVA tryptic
digest. The CICCA matrix not only provides an order of
magnitude improvement in sensitivity over CHCA butalso
provides less-complicated spectra for precursor selection as
a result of its cooler nature.
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FIGURE 10

MS spectra of 10 fmols and 100 fmols derivatized OVA tryptic digest in CICCA (upper, blue trace) and CHCA (lower, red
trace). The lower panel represents the PSD spectra of the derivatized peptide found at MH ™" of 1902.9 (GGLEPINFQTA-
ADQAR) for 10 fmol digest in CICCA (upper, blue trace) and 100 fmol digest in CHCA (lower, red trace). The fragment
ions represent a y-type ion series.
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CONCLUSION

The new, rationally designed MALDI matrix CICCA per-
formed much better than initially expected. In the Axima
TOF,? its performance far exceeded that of the more tradi-
tional CHCA matrix. In the laboratory, this matrix is also
being used currently with the Axima QIT (Shimadzu Bio-
tech), which is a hybrid MALDI ion trap TOF instrument. It
offers significant advantages over DHB, which was the matrix
of choice previously for this instrument. The CICCA matrix
significantly improves the sensitivity obtained with the current
MALDI instrumentation. This matrix also shows cleaner back-
grounds at low peptide levels as compared with CHCA. In addi-
tion, as a result of the cooler nature of this matrix as compared
with CHCA, labile peptides are better preserved in the MS mode.
This should be particularly useful for the analysis of fragile side-
chain modifications. Currently, there are no commercial sources
of highly purified matrix-grade CICCA, but with minimal
effort, adequate purity can be obtained from crude material
obtained from the Sigma Rare Chemical Library.
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